1. Do you need support for Assetto Corsa Competizione? Please use the proper forum below and ALWAYS zip and attach the WHOLE "Logs" folder in your c:\users\*youruser*\AppData\Local\AC2\Saved. The "AppData" folder is hidden by default, check "Hidden items" in your Windows view properties. If you report a crash, ALWAYS zip and attach the WHOLE "Crashes" folder in the same directory. Do not post "I have the same issue" in an existing thread with a game crash, always open your own thread. Do not PM developers and staff members for personal troubleshooting and support.
  2. As part of our continuous maintenance and improvements to Assetto Corsa Competizione we will be releasing small updates on a regular basis during the esports season which might not go through the usual announcement process detailing the changes until a later version update where these changes will be listed retrospectively.
  3. If ACC doesn't start with an error or the executable is missing, please add your entire Steam directory to the exceptions in your antivirus software, run a Steam integrity check or reinstall the game altogether. Make sure you add the User/Documents/Assetto Corsa Competizione folder to your antivirus/Defender exceptions and exclude it from any file sharing app (GDrive, OneDrive or Dropbox)! The Corsair iCue software is also known to conflict with Input Device initialization, if the game does not start up and you have such devices, please try disabling the iCue software and try again. [file:unknown] [line: 95] secure crt: invalid error is a sign of antivirus interference, while [Pak chunk signing mismatch on chunk] indicates a corrupted installation that requires game file verification.
  4. When reporting an issue with saved games, please always zip and attach your entire User/Documents/Assetto Corsa Competizione/Savegame folder, along with the logs and the crash folder (when reporting related to a crash).

The Ferrari SF15-T power unit & driving advice.

Discussion in 'Chit Chat Room' started by Aristotelis, Jul 15, 2016.

  1. Aristotelis

    Aristotelis Will it drift? Staff Member KS Dev Team

    Hello everybody, I'm delighted to present you this detailed explanation of the SF15-T power unit functionality as simulated in Assetto Corsa.
    The following document has been written by Jon Denton ( @shrapnel1977 in the forums ) who is a well known simracer and simracing journalist/blogger/writer in the past. Data provided by myself.
    Big thanks to Jon for this great guide.




    Ferrari SF15-T.


    The Ferrari SF15-T car is fitted with Ferrari’s Tipo 059/4 Power Unit, this is a hybrid system that involves multiple components. This document will explain those components and their functions, as well as providing the information required for drivers to be able to optimise the use of the power unit via in car controls whilst on track.

    The following abbreviations will be used in this document:

    PU: Power Unit

    SOC: State of Charge

    ICU: Internal Combustion Unit

    ECU: Electronic Control Unit

    ERS: EnergyRecovery System

    DRS: Drag Reduction System

    MGU-H: Motor Generator Unit-Heat

    MGU-K: Motor Generator Unit-Kinetic


    • ICU: This is a relatively standard V6 internal combustion engine, which on its own is not abnormal, though as with all things in the world’s premier racing series, the unit’s internal technology is intricate and fascinating. In this case the Ferrari Tipo 059/4 is a 1.6 litre V6 unit with the V set at 90 degrees, as dictated in the ruleset defined by the series in 2014. The ICU is connected to a turbocharger allowing the engine to be more compact but produce similar power to the 2.4 litre V8 engines used prior to 2014. The turbocharger is a device used to efficiently utilise the energy stored within the engine’s exhaust gases, comprising of a turbine and compressor supported by bearings on the same axis.
    Exhaust gas energy rotates the turbine powering the compressor, which in turn compresses and increases air fed into the engine’s combustion chamber, thus allowing for more fuel combustion and a higher power output. The ICU output is approximately 600 horsepower (hp).

    Due to regulations introduced from 2014 onwards, the rev limit of ICUs was reduced to 15,000 rpm, along with a maximum regulated fuel flow of 100Kg/hour capped at 10,500 rpm. Thus, as power output increases proportionately with the amount of fuel burned, higher revs burn more fuel, and increase output, in a shorter time. By capping the maximum fuel flow at 10,500 rpm, the same amount of fuel flow is available with revs above this point, increasing mechanical resistance, and decreasing the merits of revving higher than 10,500 rpm. In this series the engines of the past were designed to maintain higher revs to create higher output, but the new hybrid rules shift the focus to designing engines that use energy more efficiently. This efficiency drive is focussed by the series regulations stating that vehicles may only use 100Kg of fuel during a Grand Prix.


    • MGU-K: The MGU-K is an electrical component, not dissimilar to the KERS systems that the series has used since 2009. The MGU-K takes electrical energy harvested from the rear axle under braking, stores it in the ERS battery, and deploys it to the rear wheels when under power. When powering the car using electrical energy stored in the battery, the MGU-K adds 160hp (at maximum deployment) to the ICU’s 600hp.
    This is not unlike the systems used in some modern road cars. Within the series rulebook, however, the electrical energy charging the battery from the MGU-K is limited to 2 MegaJoules (MJ) per lap, and the maximum energy allowed from the battery to power the MGU-K is limited to 4 MJ per lap, presenting a compromise in management of this energy over a lap. These design restrictions ensure that energy is harvested at a lower rate than it can be deployed, thus compromise is essentially built in to the performance equation.


    • MGU-H: The MGU-H is another electrical component within the PU, which adds to the overall efficiency of the unit. The MGU-H converts heat energy from exhaust gases expelled by the ICU into electrical energy to recharge the ERS battery. ERS-H is yet to be used in road going hybrid cars and consequently is a major area of research that may eventually benefit the greater motoring world.
    Unlike the MGU-K, the series rulebook does not place any energy usage restrictions on the MGU-H. Electrical power generated by the MGU-H may be fed directly into the MGU-K, effectively bypassing the MGU-K regeneration restrictions and tapping the full 160hp. This highlights the importance of developing a system to fully utilize the MGU-H, and any new power unit heavily depends on how effectively the MGU-H performs. The overall level of charge harvested from the MGU-H is usually negligible when balanced against the overall output of the PU, this remains a major area of research in power unit development.



    In-car controls

    Assetto Corsa’s detailed model of the Ferrari SF15-T allows the virtual driver to manipulate the various configuration settings of the 059/4 PU in much the same way Ferrari’s race drivers do in real life. The default control assignments, and their functions are noted below:


    • CTRL+1: MGU-K Regen rate. This is covered by 10 settings (0%-100%). This manages how aggressively the MGU-K harvests energy from braking events on the rear axle. With 100% being the most aggressive setting and thus harvesting the most energy into the battery at a given time. Thus, management of this setting can affect the handling of the car in a number of ways:
      • A higher percentage of energy regeneration in the MGU-K will mean for a greater level of retardation upon the rear axle when off throttle (coast) and braking, possibly resulting in entry oversteer. Higher regen will also result in longer braking distances. With the offset being that the internal ERS battery SOC will increase faster based on the higher percentage.
      • A lower percentage of energy regeneration will mean less energy is being charged into the ERS battery for deployment on power. The offset to this is a more precise level of braking control via normal brake balance, and shorter braking distances.

    • CTRL+2: MGU-K Deployment profiles: These are named profiles that define variable rates of MGU-K power output to the rear wheels under power.
    When adjusting MGU-K deployment settings it is key to recognise that the benefits of adding MGU-K power output to the ICU’s power output are most applicable under mid-range acceleration; which in a car of this performance level covers the area from 140-280kmh. Provided there is sufficient traction available to the tyres, this is where the most gains will be seen by utilising the hybrid powertrain. The Ferrari SF15-T utilises “profiles” for deployment of MGU-K energy, these profiles try to optimise MGU-K power output during these acceleration phases of a lap, sometimes sacrificing top speed in the process. Some profiles also reduce MGU-K output at very low speeds where there may not be enough traction available to the rear wheels to manage the available torque. We will go through the six available profiles below:


    • Charging (0): The lowest deployment setting. It deploys no ERS battery power and leaves the ICU to do all the work. This allows the fastest battery re-charge rate in conjunction with MGU-K regen rate settings.
    • Balanced Low (1): This profile commences MGU-K power delivery at 120kmh at a rate of 10% total MGU-K deployment, on an increasing scale based upon speed, throttle opening, and gear selection, peaking at 80% of total MGU-K power between 170-250kmh. Then, from 250-300kmh total output reduces to 40% of total MGU-K power, reducing still to 0% above 300kmh.
    When on the throttle in this profile, the driver will receive MGU-K power only when the pedal is above 50% deflection. Below 50% throttle there will be no MGU-K power supplementing the ICU.

    These areas (Road speed, throttle deflection) are multiplied together and then multiplied once again with gear selection according to the below chart:

    1st: 0%
    2nd: 0%
    3rd: 20%
    4th: 50%
    5th: 100%
    6th: 100%
    7th: 100%
    8th: 0%


    Examples:

    1.) In the balanced low profile the driver is proceeding at 220kmh (80% or 0.8), on full throttle (1.0), in third gear (20% or 0.2), giving a multiplied MGU-K output of: 1.0 x 0.8 x 0.2 = 0.16 or 16% total MGU-K deployment.

    2.) In the balanced low profile the driver is proceeding at 255kmh (40% or 0.4), on full throttle (1.0), in fifth gear (100% or 1.0), giving a multiplied MGU-K output of: 1.0 x 1.0 x 0.4 = 40% total MGU-K deployment.

    • Balanced High (2): This profile is a more aggressive form of the previous profile, using a similar multiplier. MGU-K power delivery commences at 120kmh at 70% total MGU-K deployment, on an increasing scale based upon speed, throttle opening, and gear selection, peaking at 100% of total MGU-K power between 160-260kmh. Then, from 260kmh MGU-K power delivery ramps downwards, with 270kmh giving 70% power, 280kmh giving 40%, scaling gradually to reduce to 0% deployment at 300kmh or above.
    When on the throttle in this profile, the driver will receive MGU-K power only when the pedal is above 50% deflection. Below 50% throttle there will be no MGU-K power supplementing the ICU.


    These areas (Road speed, throttle deflection) are multiplied together and then multiplied once again with gear selection according to the below chart:

    1st: 0%
    2nd: 50%
    3rd: 70%
    4th: 100%
    5th: 100%
    6th: 100%
    7th: 70%
    8th: 0%


    Examples:

    1.) In the balanced high profile the driver is proceeding at 220kmh (100% or 1.0), on full throttle (1.0), in third gear (70% or 0.7), giving a multiplied MGU-K output of: 1.0 x 1.0 x 0.7 = 0.70 or 70% total MGU-K deployment.

    2.) In the balanced high profile the driver is proceeding at 255kmh (100% or 1.0), on full throttle (1.0), in fifth gear (100% or 1.0), giving a multiplied MGU-K output of: 1.0 x 1.0 x 1.0 = 100% total MGU-K deployment.

    • Overtake (3): Probably the highest MGU-K deployment rate generally used in races, this setting provides good power output at higher speeds for a situation whereby the driver is in a battle with another car and needs as much power as they can get for short bursts. Naturally the battery SOC will deplete faster on this setting so it cannot be used for extended periods.
    MGU-K power delivery commences on the overtake profile at 160kmh with 50% total MGU-K deployment, this then adopts an increasing scale of MGU-K deployment based on road speed peaking at 100% deployment at 260kmh. Then, from 260kmh MGU-K power delivery ramps downwards somewhat, with 270kmh giving 70% power, but unlike previous profiles the deployment rate stays at 70% from 270kmh to maximum speed.

    When on the throttle in this profile, the driver will receive MGU-K power only when the pedal is above 80% deflection. Below 80% throttle there will be no MGU-K power supplementing the ICU, suggesting that this profile is primarily used for situations when the driver is really pushing. At 80% deflection the driver will receive 40% deployment, at 90% deflection 80%, and 100% deployment at 100% throttle opening.

    These areas (Road speed, throttle deflection) are multiplied together and then multiplied once again with gear selection according to the below chart:

    1st: 0%
    2nd: 0%
    3rd: 50%
    4th: 100%
    5th: 100%
    6th: 100%
    7th: 100%
    8th: 100%


    Examples:

    1.) In the overtake profile the driver is proceeding at 220kmh (82.5% or 0.825), on full throttle (1.0), in third gear (50% or 0.5), giving a multiplied MGU-K output of: 1.0 x 0.825 x 0.5 = 0.4125 or 41.3% total MGU-K deployment.

    2.) In the overtake profile the driver is proceeding at 255kmh (97.5% or 0.975), on full throttle (1.0), in fifth gear (100% or 1.0), giving a multiplied MGU-K output of: 1.0 x 1.0 x 0.975 = 97.5% total MGU-K deployment.

    • Top Speed (4): As the name suggests, the Top Speed profile is setup to deliver the highest performance at higher speeds and gears. This profile is mostly specific to circuits such as Monza, as it works to save as much ERS battery power as possible at lower speeds to be able to deploy more MGU-K power at higher speeds.
    MGU-K power delivery commences in the top speed profile at 120kmh scaling from 0% to 60% MGU-K deployment at 200kmh. Then through 200-250kmh deployment is fixed at 60%, with a gradual decrease in deployment to 50% from 250-330kmh where it stays at 50% to maximum speed.

    When on the throttle in this profile, the driver will receive MGU-K power only when the pedal is above 80% deflection. Below 80% throttle there will be no MGU-K power supplementing the ICU. At 80% deflection the driver will receive 40% deployment, at 90% deflection 80%, and 100% deployment at 100% throttle opening. This is the same throttle map as the overtake profile.

    These areas (Road speed, throttle deflection) are multiplied together and then multiplied once again with gear selection according to the below chart:

    1st: 0%
    2nd: 0%
    3rd: 0%
    4th: 100%
    5th: 100%
    6th: 100%
    7th: 100%
    8th: 100%


    Examples:

    1.) In the top speed profile the driver is proceeding at 220kmh (60% or 0.6), on full throttle (1.0), in third gear (0%), giving a multiplied MGU-K output of: 1.0 x 0.6 x 0 = 0 or 0% total MGU-K deployment.

    2.) In the top speed profile the driver is proceeding at 255kmh (59.38% or 0.5938), on full throttle (1.0), in fifth gear (100% or 1.0), giving a multiplied MGU-K output of: 1.0 x 1.0 x 0.5938 = 0.5938 or 59.4% total MGU-K deployment.

    • Hotlap (5): This profile is the highest setting for MGU-K deployment but it is not a simple matter of 100% deployment throughout all areas, as deployment must still be balanced to provide a drivable car and enough energy deployment to cover a single lap.
    This setting is usually used in qualifying in conjunction with minimal regen rates to deliver maximum performance from the PU. At this setting, on most circuits, the battery SOC will be depleted to zero in one or two laps.

    MGU-K power delivery commences in the hotlap profile at 100kmh scaling from 0% to 20% MGU-K deployment at 120kmh. Then through 120-160kmh deployment scales up from 20% to 100% where it stays until maximum speed.

    When on the throttle in the hotlap profile, the driver will receive MGU-K power when the pedal hits 10% deflection at a rate of 10% MGU-K deployment. With a linear scale moving up to 100% MGU-K deployment on 100% throttle. Providing a linear throttle response to MGU-K power delivery in this profile is designed to allow the driver to extract the maximum possible performance from the car over a single lap.

    These areas (Road speed, throttle deflection) are multiplied together and then multiplied once again with gear selection according to the below chart:

    1st: 20%
    2nd: 70%
    3rd: 70%
    4th: 70%
    5th: 70%
    6th: 70%
    7th: 70%
    8th: 70%


    Examples:

    1.) In the hotlap profile the driver is proceeding at 220kmh (100% or 1.0), on full throttle (1.0), in third gear (70% or 0.7), giving a multiplied MGU-K output of: 1.0 x 1.0 x 0.7 = 0.7 or 70% total MGU-K deployment.

    2.) In the hotlap profile the driver is proceeding at 255kmh (100% or 1.0), on full throttle (1.0), in fifth gear (70% or 0.7), giving a multiplied MGU-K output of: 1.0 x 1.0 x 0.7 = 0.7 or 70% total MGU-K deployment.

    It may seem surprising that the hotlap profile balances MGU-K deployment to 70% in gears above 2nd and does not scale to 100%. This is to preserve enough SOC to complete the lap. It would be assumed that over a qualifying lap, the driver would configure the MGU-H to MOTOR mode (See CTRL+3 section below) to supplement the MGU-K power and provide the maximum manageable power output over one lap.


    • CTRL+3: MGU-H Mode:This setting controls how the MGU-H operates in conjunction with other PU components:
      • Motor: In this mode the MGU-H will recover energy from exhaust gases and direct this power directly into the MGU-K, thus supplementing overall power output.
      • Battery: In this mode the MGU-H recovers exhaust gases and diverts this energy into the ERS battery to increase the SOC.

    • CTRL+4: Engine Brake (Range 1-13): This setting sets the ECU within the ICU to retain a small percentage of fuel flow to blow onto the diffuser, reducing engine braking from the ICU on coast. This offsets the high level of coast locking on the rear axle that is generated with higher MGU-K regen settings (CTRL+1).
      • Lower settings reduce the level of engine braking and thus reduces retardation from the drivetrain onto the rear axle under coast. This provides easier management of rear axle locking with MGU-K regen and brake balance. Due to the increase in diffuser exhaust flow, a lower setting will also provide additional rear downforce and stability. However, a lower engine brake settings will consume more fuel and thus affect fuel consumption over a stint.
      • Higher settings allow a more conventional drivetrain linkage and thus more retardation to the rear axle from the ICU, this needs to be balanced against MGU-K regen settings to provide a comfortable balance for the driver along with suitable fuel consumption numbers.



    • KERS: As with other cars in Assetto Corsa, the KERS button can be mapped in the SF15-T. This provides an instant “max power” button for use in battles with other cars. Applying the KERS button essentially reflects the following ERS settings:
      • MGU-K regen to 0%
      • MGU-K deploy profile to Hotlap
      • MGU-H mode to Motor
    This persists while the KERS button is held down, and thus must be used carefully as it will dramatically reduce battery SOC.



    • DRS: DRS opens a slot gap in the rear wing on certain denoted parts of the circuit that significantly reduces drag and increases top speed. This is freely usable in practice and qualifying sessions, but restricted in the race to being used only when within one second of the car in front. Upon entering the DRS zone the white LED light on the top far-left of the steering wheel will illuminate, and upon pressing the DRS button the second light in will also illuminate to indicate that the DRS is open. Opening of the DRS has to be engaged by the driver when the car enters the DRS zone. In the DRS zone the driver should press the DRS button as soon as possible to maximise performance through the zone the DRS will close when the driver applies the brakes at the end of the zone. Opening the DRS in the rear wing has a knock-on effect of reducing rear downforce and thus upsetting the front to rear downforce balance. This is something the driver must be aware of when the DRS is open.





    Managing the SF15-T on track.


    At all times that the Ferrari SF15-T is on track, as long as the driver sets the above switches accordingly, energy is either being harvested into the ERS battery, or is being deployed from the ERS battery in different ways depending on what the car is doing.

    Under braking the MGU-K generates electricity from part of the kinetic energy lost when the car is braking, and stores that electricity in the ERS battery. As the MGU-K’s maximum output is 160hp (or 120 kiloWatts) and the amount of energy allowed to be stored in the battery is 2MJ per lap, the SF15-T needs to brake for around 16.7 seconds per lap to reach this maximum charge.

    Upon acceleration out of corners the car can accelerate faster by adding the power output of the MGU-K to the ICU’s power output, in the process depleting the SOC of the ERS battery. However, concurrently the MGU-H can be utilising the exhaust gases to recharge the ERS battery (when in BATTERY mode), while the ICU’s turbocharger uses its compressor to send compressed air into the engine. Under full-acceleration, the exhaust energy fed to the turbine can increase to a point where it exceeds the amount of air the compressor can handle to feed into the engine, in this situation the MGU-H converts this excess exhaust energy into electricity, which it can then send directly to the MGU-K for deployment to the rear wheels, or used to increase the battery SOC.

    There are no rules for how much electricity the MGU-H is allowed to generate, so the MGU-K’s output can be added to the ICU’s output without worrying about the rules on the amount of electricity that the battery can charge or discharge. Thus, unused exhaust energy can be efficiently used to accelerate faster.

    The MGU-H also solves the problem of turbo “lag” on power application by using an electrical motor to power the turbo’s compressor, saving the turbine from having to wait for the exhaust gas to do so.

    At different stages of a race two cars can have very different braking performance due to MGU-K harvesting (regen), and thus a driver must be mindful of their competitor’s actions on track with regard to their regen rate. This is visible to a following driver by the red rain light flashing under braking or coast conditions.

    Managing the SF15-T’s various in car systems is crucial for a driver to achieve the best performance from the car and thus potential success. Each circuit will present different car configurations as battery recharge is dependent on braking events and total deployment will vary based on the amount of time spent on throttle over a lap. The key to this configuration is to find an optimum balance between deploy and regen on the MGU-K that you can work within to maintain a reasonable SOC, whilst using the push-to-pass button to increase power at required intervals. A driver must constantly be aware of, and manage the battery SOC.

    Ideally, a driver will want to maximise performance with the highest possible MGU-K deployment setting over a stint. If you perform a lap with a deploy profile of “Hotlap”, and a regen rate of zero then you may find on some circuits that the ERS battery is flat within one lap, with the maximum deployment of 2MJ completed well before the end of the lap. Thus you will need to start to dialing in some regen. The assumption would be that maximum regen would be desirable, to always recover as much battery in braking events, but the compromise here comes in braking performance. As the MGU-K works to harvest energy from the rear axle, there is a an additional diff locking effect that not only increases braking zones, but also introduces handling instability into the corner entry phase. Depending on the steering angle in the car this can be understeer or oversteer. Understeer can be seen when the MGU-K regen is taken into account by the dynamic brake balance system that attempts to re-balance braking performance by reducing rear brake pressure, to prevent rear wheel locking; this gives the feeling that brake bias is moved forward (though it should be understood that no additional brake pressure is moved forward, there is only a reduction in rear brake pressure). Oversteer can potentially be seen on the entry phase of a corner as the driver turns in and releases the brake, at this point the MGU-K regen setting will retain a braking effect upon the rear axle that can initiate oversteer as the steering angle increases.

    This behavior, and potentially variable braking performance is to be expected with higher MGU-K regen rates.

    It is the case that with the lowest possible regen settings on the MGU-K, the shortest braking distances can be achieved, and thus faster laptimes. As well as that, the feeling of the car on entry is “cleaner”, whereby the driver feels more in control of the car’s balance upon entry to the corner via their own foot pedals and relative brake balance setting. As the driver adjusts the MGU-K regen and deploy settings the balance of the car on entry and exit can change notably, meaning a driver has to become adaptable to these changes as they drive. A qualifying run with heavily aggressive MGU settings will suit for one lap, but when given the balancing act that may be required to maintain efficiency over a full race it is not unlikely to see a very large laptime difference between the two sessions.

    To find the optimum average laptime over a race stint in the Ferrari SF15-T a driver must work to find a balance between MGU-K deployment and regeneration that suits the particular track layout and their driving style, all the while maintaining sufficient ERS battery SOC for when it is needed to overtake. Additionally, depending on the race configuration, a driver must keep fuel consumption under control, hit the DRS button in the right places, manage brake bias and engine braking settings as fuel load changes, and use the conventional steering wheel and pedals to keep the car on the road.

    Good luck!



    Free distribution is permitted as long as the contents of this document are not altered in any form.
     

    Attached Files:

    uff_, Jay Ingram, Joshua/A and 134 others like this.

  2. Similar Threads
    Forum Title Date
    Chit Chat Room Ferrari SF15-T Tyre Temps Apr 8, 2017
    Bug reports Ferrari SF15-T and F138 missing aero options Feb 7, 2017
    Console Lounge Ferrari SF15-T quick tutorial Jan 12, 2017
    Console Lounge Ferrari SF15-T Question and Comments Jan 11, 2017
    Console Lounge Bedtime reading about the upcoming Ferrari SF15-T power unit Jan 8, 2017
    GUI - HUDs - Apps Bugs & Issues Porsche 919 and Ferrari SF15-T don't report ERSMaxJ over Python API Nov 22, 2016
    Online Leagues / Championships room Ferrari SF15-T League starting 27th August at Flag-to-flag.com Aug 9, 2016
    Online Leagues / Championships room Ferrari SF15-T League @ Flag-to-Flag.com Jul 29, 2016
    Physics Bugs & Issues Ferrari SF15-T and F138 Damper Problems Jul 15, 2016
    GUI - HUDs - Apps Bugs & Issues Ferrari F138 and Ferrari SF15-T not appearing in Opponent selection menu Jul 14, 2016
    Screens & Videos Ferrari sf15-t hotlap @ red bull ring Oct 25, 2015
    3D car models Ferrari sf15-t (wip) beta version is available Aug 1, 2015
    3D car models Ferrari sf15-t | wip May 16, 2015
    ACC Graphics - Tracks and Cars How to get official Ferrari 296 livery Nov 26, 2023
    ACC Graphics - Tracks and Cars Ferrari 296 GT3 Only 2 MFD pages Nov 24, 2023

  3. Aristotelis

    Aristotelis Will it drift? Staff Member KS Dev Team

    So all this theory is great, but here are some practical advice on how to extract more performance from the car, before starting to fiddling around with setups, ERS profiles and everything else.


    First of all, know your engine performance. The engine is practically capped at 10500rpm. This is where the red leds are ending. It actually hurts acceleration if you push to over 11500rpm or worse to the limiter.
    So what you have to do, is change gear at the 1st or 2nd blue led for low gears (1st, 2nd, 3rd) and at the last red led or 1st blue led for the rest of the gears.
    If you don’t get adeguate top speeds, then it is because you are using too much revs. Short shift is the key word here.
    Also because the rules of the series impose fixed gear ratios for the whole season, the 8 gears overlap in a way that the driver can choose which one to use depending on the available traction and speed. The ERS profiles also take this into consideration as you probably have learned by know.

    Use the MGU-H modes from Batteries to Motor depending on what you want to do. As explained in the above document, even the hotlap profile only uses around 70% of total MGU-K power. Change the MGU-H to Motor and get another 20-25% of total electric power. Use wisely, remember that if you deploy your batteries to overtake someone, then maybe he can overtake you back when you will remain without batteries energy.

    Car has plenty of torque, everywhere from 7000 to 11000. It’s a torque monster.
    Together with the various regenerative functionalities and braking difficultie, aero characteristics and tyre characteristics, it requires a specific driving technique. For slow turns, chicanes and similar situations, brake as late as possible in a completely straight line. DO NOT trailbrake into the curve. Go deep straight braking before turning in. Get off the brakes and do a very fast turn in. Take a very late apex and accelerate as straight as possible to get as much traction as possible.

    For medium to fast bends, use as much of the width of the track as possible and take the most wide line possible, every little inch pays. The less you use the steering wheel the more power you can apply and more traction you will have. A great example is Turn 4 of Barcelona. Tiny line modifications can make a difference between exiting flat out from the apex or having to modulate the gas pedal. Again ERS profiles here can be your friend.

    The car has also lot’s of aero trickery to make it more aerodynamically efficient. The correct front/rear height and angle is very important to get the most out of your diffuser. The front wings will bend at speed to give you some more efficiency. The rear “monkey seat” wing will get accelerated air from the rear exhaust and that will help it to have less drag and also stall the big rear wing or help it being more efficient, so it depends on your accelerator input too.. it’s not as efficient as a blown diffuser, but every little thing helps. You can watch all this magic trickery in the WINGS dev app.

    Most importantly, the car is VERY sensitive to setup adjustments. One click at a time is not mandatory but OBLIGATORY. Take your time, be focused if you feel frustrated stop and try again the next day… but most importantly… Have fun!
     
    uff_, Joshua/A, Gutenisse and 69 others like this.
  4. Aristotelis

    Aristotelis Will it drift? Staff Member KS Dev Team

    Keep in mind that although we tried to do as good job as we could on the car, the actual real car and engineers can program a distance based ERS profile. So the real car can understand where it stands in the track and change the ERS values on the fly... it's a bit easier for the driver and more control for the engineers. Also there is absolutely no limit on what kind and how many profiles they can do. We will try to add more profiles in the future that can cover every demand of circuit or drivers.

    Cheers

    Almost forgot, hotfix, probably tonight with improvements to the engine power delivery over 10500RPM and gear ratios.
     
    uff_, Joshua/A, Gutenisse and 59 others like this.
  5. JeDa

    JeDa Rookie

    Amazing! Great work! Many thanks!
     
    cabelo3d likes this.
  6. jim jones

    jim jones Simracer

    My head hurts!
     
  7. F1Racer

    F1Racer Racer

    Amazing stuff, thanks Aris. Hopefully with this info I can now actually find a way to get my car into 7th and 8th gears which so car it has not asked for. Probably my shift points then.
     
  8. Bigbazz

    Bigbazz Racer

    I had the "gears" app up and had noticed the big drop off in Turbo boost when you revved the car, found a lot of speed by shifting way earlier than what might feel normal. Especially at the Red Bull Ring it made a pretty substantial difference to laptime. All this stuff is a lot to take in though, I don't even know where to start with it all when it comes to learning the engine of this car.
     
  9. U need to be a programmer to understand how to even drive that damn thing , amazing job aris and co ! :eek:
     
    Solmyr likes this.
  10. Mogster

    Mogster Alien

    Good lord :D
     
    Cote Dazur likes this.
  11. The Moog

    The Moog Racer

    Fantastic stuff! This is going to take me a long time to learn to use properly, but I love the realism of simulating these of the systems.

    @Aris: Could you add all of these new states to the shared memory so that they can each be displayed in real-time on external apps (such as Z1 Simdash)?
     
    Jebus likes this.
  12. RoG-PoWeR

    RoG-PoWeR Racer

  13. DaveS78

    DaveS78 Simracer

    Great information Aris! Huge thanks!
     
  14. lelinuxien52

    lelinuxien52 Racer

  15. Thomas Gocke

    Thomas Gocke Alien

    In the third to last section it says :"...the ERS battery is flat within one lap, with the maximum deployment of 2MJ completed well before the end of the lap."
    Shouldn't it say "... 4MJ ..." ?

    Anyway, great write up with lot's of information, thanks!
     
  16. lelinuxien52

    lelinuxien52 Racer

    Yeah probably a mistake. 2MJ is charging limit, 4MJ discharging limit. You're right.
     
  17. Pascalwb

    Pascalwb Hardcore Simmer

    This is just amazing. Thank you kunos for bringing F1 into AC. These 2 cars are probably my favorite.

    So if I understand it correctly the percentage of MGU-K and the profiles are the same thing? So if I set 70% it stays at 70 the whole lap. But if I set Hotlap it changes the percentages according to profile? So at the end I only need to set one of these 2?
     
  18. Schnipp

    Schnipp Alien

    So 4MJ is the discharge limit per lap, but does somebody know how big the capacity of the battery is in MJ?
     
  19. Matix

    Matix Rookie

    So, someone has Allison's phonenumber? Now I understand those who said that this is too expensive DLC. You have to hire an engineer to guide you through the race.
     
    Rickne, VenomSRT, asehauDLM and 5 others like this.
  20. Schnipp

    Schnipp Alien

    No, the percentage value is for recovery, this means how much of the max. regeneration is used under braking and coasting to charge the battery.

    The modes (hotlap, overtake, etc.) control the amount of electric power of the hybrid system that supports the combustion engine on acceleration and thus discharge the battery.
     
    Pascalwb likes this.
  21. Pascalwb

    Pascalwb Hardcore Simmer


    Oh thanks, I totally overlooked that Regen/Deploy after the MGU-K.
     

Share This Page

  1. This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
    By continuing to use this site, you are consenting to our use of cookies.
    Dismiss Notice